Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain.
نویسندگان
چکیده
BACKGROUND The repulsive guidance molecule (RGM) is involved in formation of the central nervous system during development by moderating the repulsion of growing axons. However, the role of RGM in adult central nervous system lesions remains to be clarified. OBJECTIVE To identify and determine RGM expression in adult brains with focal cerebral ischemia or traumatic brain injury and in neuropathologically unaffected control brains. Patients Twenty-one brains of patients with focal cerebral ischemia, 25 brains after traumatic brain injury, and 4 control brains. Main Outcome Measure Expression of RGM as assessed by immunohistochemical analysis. RESULTS In normal brains, RGM expression was detected on the perikarya of some neurons, choroid plexus, smooth muscle and endothelial cells, oligodendrocytes, and myelinated white matter fibers. After focal cerebral ischemia and traumatic brain injury, RGM-immunopositive cells accumulated in lesional and perilesional areas. In hemorrhagic lesions, a massive accumulation of RGM-immunopositive cells was observed. During the first week after insult, RGM expression remained confined to neurons, smooth muscle and endothelial cells, and leukocytes infiltrating the lesion. Thereafter, with maturation of the lesion, we observed RGM expression by components of the developing scar tissue, such as fibroblastoid cells, reactive astrocytes, and a pronounced extracellular RGM deposition resembling neo-laminae. CONCLUSIONS This is the first study of RGM in the human central nervous system. Following central nervous system injury, RGM, a novel, potent axonal growth inhibitor, is present in axonal growth impediments: the mature myelin, choroid plexus, and components of the developing scar.
منابع مشابه
P134: Central Nervous System and Blood Biomarker in Stroke, CNS Bleeding, Epilepsy, and Traumatic CNS Injury; MicroRNAs
A Central nervous system (CNS) hemorrhage is bleeding in or around the brain and spinal cord. Reasons of CNS hemorrhage include high blood pressure, cancers, drug abuse, abnormally weak blood vessels that leakage, and trauma. Regression of CNS bleeding was confirmed to be relatively repetitive in patients with severe FV, FX, FVII and FXIII deficiencies. Generally in CNS hemorrhage, radiological...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملRGMa inhibition promotes axonal growth and recovery after spinal cord injury
Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, ...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملThe role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system.
During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of neurology
دوره 62 10 شماره
صفحات -
تاریخ انتشار 2005